Discuz! Board

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 4|回复: 0

今日热点一半是海水,一半是火焰,国产AI芯片路在何方

[复制链接]

14万

主题

0

回帖

43万

积分

超级版主

Rank: 8Rank: 8

积分
434574
发表于 2024-10-19 09:23:34 | 显示全部楼层 |阅读模式
导读:2024年9月,国内AI芯片巨震。先是国产AI芯片独角兽象帝先宣布调整业务结构,解雇部分员工。其后,国产AI芯片初创企业壁仞科技宣布启动上市流程,加上此前宣布启动上市流程的燧原科技,这已经是比较近第二起宣布启动上市流程的AI芯片。AI芯片市场广阔,缘何赛道内企业表现不一AI芯片创业难点在哪赛道投融资情况如何本文尝试分析和探讨。
综述
AI芯片也被称为AI加速器或计算卡,按技术架构可以分为通用图形处理器(GPGPU),处理器(CPU),专用集成芯片(ASIC)以及现场可编程门阵列(FPGA)等。在人工智能的发展中,研发人员发现并行计算可以进行高效的模型训练,处理大规模复杂数据。而GPGPU相对其他芯片并行计算性能较高,适合计算密集型应用,因此成为了算力芯片的主流。
按功能分类,AI芯片可以分为训练卡和推理卡两个类型。训练卡也叫大卡,通常拥有更高的计算能力和内存带宽,以支持训练过程中的大量计算和数据处理;推理卡也称小卡,其参数较低,只需满足推理需求。一般情况下,训练卡可以作为推理卡使用,但推理卡不能作为训练卡使用。简单来说,大模型的训练需要大量的训练卡形成显卡集群,而在应用上,则需要推理卡运行AI模型进行计算。
本轮人工智能浪潮由CGPT掀起,并以语言大模型和生成式AI应用作为切入点。自谷歌在2022年发表至今,T除了带来像CGPT这样的C端爆款产品外,其早已在自然语言处理、计算机视觉、自动驾驶等领域里广泛应用。各中外科技企业持续加大对相关的投入,包括谷歌、M、微软、字节跳动、百度等海内外一众科技巨头和初创企业均希望分一杯羹,其他非技术也不断在人才、技术和资源方面进行布局。根据BI的预测数据,到2032年,生成式AI在总体信息技术硬件、软件、服务、广告和游戏等支出中的占比或将从目前不到1%的水平扩大至12%。
图表1:2022-2032E全球生成式AI收入及预测(单位:10亿美元)
数据来源:BI、来觅数据整理
2022年,OAI推出首代生成式预训练语言模型GPT-1,拥有117亿个参数,2023年发布的GPT-4参数量约为18万亿个。5年时间超万倍参数量的提升带来的是大模型对于算力需求的指数级别增长。OAI测算,自2022年起,全球头部AI模型训练算力需求每3-4个月翻一番。尤其是在2023年后,AI发展如火如荼,海内外厂商纷纷都加大了生成式AI的投入,”百模大战”再起,这也使得算力需求将长期陷入紧缺。
图表2:2022-2026E智能算力规模及预测(单位:亿元)
数据来源:IDC、来觅数据整理
在算法攻关、以及部分模型开源的背景下,国内大模型进展迅速,不少国产AI大模型宣称其单项能力已追赶上GPT-4。就目前而言,国内AI能力与海外比较大的差距主要在AI芯片上。由于众所周知的原因,国内的科技企业不但法购买先进AI芯片,而且即使有了完整方案,自行制造AI芯片也变得十分困难。在这种背景下,国产AI芯片潜在成长空间巨大。
AI芯片是一个赢家通吃的游戏。N在AI芯片上的垄断性地位足以使大多数竞争对手望而生畏。来觅研究院认为,AI芯片的难度主要体现在个方面,即单卡性能集群性能、生态灵活性、制造难度性价比。综合这个方面,N综合力比较为领先,因而其在AI芯片市场取得了超90%的市场份额。
国内企业产业进展如何我们统计了国内外相关AI芯片的具体参数,可以看到目前国内AI芯片与海外AI芯片单卡性能上仍存在差距;但更大的差距来自训练侧的万卡互联与生态建设。总体而言,国产AI芯片长期来看任重而道远。
图表3:国内外AI芯片厂商、产品及技术特征情况
数据来源:公开资料、来觅数据整理
国内AI芯片主要集中于推理侧,这一方面是为了与英伟达展开错位竞争,另一方面,随着AI技术的发展与普及,行业对高性能、低功耗的AI芯片的需求正不断增加。不过,训练侧芯片也有厂商正在布局,在2024年全球AI芯片峰会上,壁仞科技首次公布自主原创的异构GPU协同训练方案HGCT,业界首次支持3种及以上异构GPU混合训练同一个大模型。摩尔线程公布了其基于MTTS4000的万卡智能集群夸娥(KUAE),发力训练测。华为、寒武纪、海光信息等厂商亦有类似动作。
AI芯片创业极为困难。来觅研究院认为,AI芯片创业难点一是要解决芯片、制造问题。由于海外制约,相关工具已被管制。然而制造问题是更现的难题,N比较新的AI芯片采用4NM制程,目前仅有台积电具备制造力,而大陆芯片制造力则稍显不足。
二是市场问题,英伟达仍是目前比较有性价比的AI芯片方案,国内AI采购国产AI芯片一方面是由于国产替代的主观或客观原因,另一方面也希望能使用更贴合自己需求的产品(如字节跳动等厂商针对需求自行AI芯片)。大模型一方面加速了AI芯片的发展,另一方面也让芯片厂商之间的差距越来越大。国产AI芯片厂商必须考虑自己的产品能满足客户的什么特定需求,才能让客户甘愿花费高额溢价。
是盈利能力。由于众所周知的原因,AI芯片研发周期长、强度大、成本高,而这些投入往往在短期内难以得到回报。因此,能获得造血能力极为重要。在目前一级市场动态下,完全指望创投市场输血可能性微乎其微,AI芯片的正现金流同样值得考验。
投融动态
AI芯片市场近年来呈现出强劲的增长势头。2024年全球AI芯片市场规模预计将达到71252亿美元,同比增长33%,并有望在2025年进一步增长至91955亿美元。在市场,2023年AI芯片市场规模达到1206亿元,同比增长419%,预计2024年将增长至1412亿元。据来觅数据显示,AI芯片亦是今年比较为活跃的赛道之一,融资轮次仍偏向早期,但部分明星项目已得到市场认可,资本正不断加码。感兴趣的读者,可以登录RPEVC平台获取AI芯片赛道全量融资案例、被投项目及深度数据分析。
图表4:2024年以来AI芯片主要投融事件
数据来源:来觅数据
展望
随着大模型革命席卷全球,算力需求达到新高,推动云、边、侧AI芯片迭代与进化。在数据爆炸式增长、工艺逼近物理极限、国际形势复杂多变朵阴云下,许多AI芯片企业低调务地承压前行,积极备战生成式AI浪潮带来的时代机遇。
正如EM所言:只有原材料是仅有的限制,制造的每一个环节都完全可以被重新发明。AI的巨大潜力必将催生出数万亿的市场规模,”卡脖子”只是暂时的,伴随着先进制程的突破与资本的投入,我们与海外AI的距离是在缩小而不是增大。而国产替代的空间是巨大,相关企业也会迎来高速增长机会。
终局思维需要锁定胜者。未来的世界需要穷算力,但参考美国市场竞争格局,胜者可能只有寥寥数个。由于AI芯片赢家通吃的特点,我们认为国产AI芯片胜出必须同时具备技术力、渠道能力、融资能力几项能力。这些能力对创业挑战巨大,但形之中也构建了行业壁垒。
本文内容基于来觅数据认为可信的公开资料或地调研资料,我们力求本文内容的客观、公正,但对本文中所载的信息、观点及数据的准确性、可靠性、时效性及完整性不作任何明确或隐含的保证,亦不负相关法律责任。受研究方法和数据获取资源的限制,本报告全部内容仅供参考之用,对任何人的投资、商业决策、法律等操作均不构成任何建议。在任何情况下,对因参考本报告造成的任何影响和后果,来觅数据均不承担任何责任。

这意味着llm agent是行业的风向标,能够给人们带来很大的自信心。立即探索AI Agent应用案例,推动企业流程自动化与智能化转型。https://www.betteryeah.com/agentstore

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|企业-展美呗贤果有限公司

GMT+8, 2024-11-5 01:56 , Processed in 0.051874 second(s), 18 queries .

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表